Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1362987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384797

RESUMO

GPCR-Gi protein pathways are involved in the regulation of vagus muscarinic pathway under physiological conditions and are closely associated with the regulation of internal visceral organs. The muscarinic receptor-operated cationic channel is important in GPCR-Gi protein signal transduction as it decreases heart rate and increases GI rhythm frequency. In the SA node of the heart, acetylcholine binds to the M2 receptor and the released Gßγ activates GIRK (I(K,ACh)) channel, inducing a negative chronotropic action. In gastric smooth muscle, there are two muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3. M2 receptor activates the muscarinic receptor-operated nonselective cationic current (mIcat, NSCC(ACh)) and induces positive chronotropic effect. Meanwhile, M3 receptor induces hydrolysis of PIP2 and releases DAG and IP3. This IP3 increases intracellular Ca2+ and then leads to contraction of GI smooth muscles. The activation of mIcat is inhibited by anti-Gi/o protein antibodies in GI smooth muscle, indicating the involvement of Gαi/o protein in the activation of mIcat. TRPC4 channel is a molecular candidate for mIcat and can be directly activated by constitutively active Gαi QL proteins. TRPC4 and TRPC5 belong to the same subfamily and both are activated by Gi/o proteins. Initial studies suggested that the binding sites for G protein exist at the rib helix or the CIRB domain of TRPC4/5 channels. However, recent cryo-EM structure showed that IYY58-60 amino acids at ARD of TRPC5 binds with Gi3 protein. Considering the expression of TRPC4/5 in the brain, the direct G protein activation on TRPC4/5 is important in terms of neurophysiology. TRPC4/5 channels are also suggested as a coincidence detector for Gi and Gq pathway as Gq pathway increases intracellular Ca2+ and the increased Ca2+ facilitates the activation of TRPC4/5 channels. More complicated situation would occur when GIRK, KCNQ2/3 (IM) and TRPC4/5 channels are co-activated by stimulation of muscarinic receptors at the acetylcholine-releasing nerve terminals. This review highlights the effects of GPCR-Gi protein pathway, including dopamine, µ-opioid, serotonin, glutamate, GABA, on various oragns, and it emphasizes the importance of considering TRPC4/5 channels as crucial players in the field of neuroscience.

2.
Am J Physiol Cell Physiol ; 324(6): C1295-C1306, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154492

RESUMO

Traditionally prescribed for mood disorders, tricyclic antidepressants (TCAs) have shown promising therapeutic effects on chronic neuralgia and irritable bowel syndrome. However, the mechanism by which these atypical effects manifest is unclear. Among the proposed mechanisms is the well-known pain-related inhibitory G-protein coupled receptor, namely the opioid receptor (OR). Here, we confirmed that TCA indeed stimulates OR and regulates the gating of TRPC4, a downstream signaling of the Gi-pathway. In an ELISA to quantify the amount of intracellular cAMP, a downstream product of OR/Gi-pathway, treatment with amitriptyline (AMI) showed a decrease in [cAMP]i similar to that of the µOR agonist. Next, we explored the binding site of TCA by modeling the previously revealed ligand-bound structure of µOR. A conserved aspartate residue of ORs was predicted to participate in salt bridge interaction with the amine group of TCAs, and in aspartate-to-arginine mutation, AMI did not decrease the FRET-based binding efficiency between the ORs and Gαi2. As an alternative way to monitor the downstream signaling of Gi-pathway, we evaluated the functional activity of TRPC4 channel, as it is well known to be activated by Gαi. TCAs increased the TRPC4 current through ORs, and TCA-evoked TRPC4 activation was abolished by an inhibitor of Gαi2 or its dominant-negative mutant. As expected, TCA-evoked activation of TRPC4 was not observed in the aspartate mutants of OR. Taken together, OR could be proclaimed as a promising target among numerous binding partners of TCA, and TCA-evoked TRPC4 activation may help to explain the nonopioid analgesic effect of TCA.NEW & NOTEWORTHY Endogenous opioid systems modulate pain perception, but concerns about opioid-related substance misuse limit their use. This study has raised TRPC4 channel as a candidate target for alternative analgesics, tricyclic antidepressants (TCAs). TCAs have been shown to bind to and activate opioid receptors (ORs), leading to downstream signaling pathways involving TRPC4. The functional selectivity and biased agonism of TCA towards TRPC4 in dependence on OR may provide a better understanding of its efficacy or side effects.


Assuntos
Analgésicos Opioides , Antidepressivos Tricíclicos , Antidepressivos Tricíclicos/farmacologia , Antidepressivos Tricíclicos/uso terapêutico , Ácido Aspártico , Ligantes , Proteínas de Transporte , Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Receptores Opioides
3.
Nat Commun ; 14(1): 2550, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137991

RESUMO

G-protein coupled receptors (GPCRs) and ion channels serve as key molecular switches through which extracellular stimuli are transformed into intracellular effects, and it has long been postulated that ion channels are direct effector molecules of the alpha subunit of G-proteins (Gα). However, no complete structural evidence supporting the direct interaction between Gα and ion channels is available. Here, we present the cryo-electron microscopy structures of the human transient receptor potential canonical 5 (TRPC5)-Gαi3 complexes with a 4:4 stoichiometry in lipid nanodiscs. Remarkably, Gαi3 binds to the ankyrin repeat edge of TRPC5 ~ 50 Å away from the cell membrane. Electrophysiological analysis shows that Gαi3 increases the sensitivity of TRPC5 to phosphatidylinositol 4,5-bisphosphate (PIP2), thereby rendering TRPC5 more easily opened in the cell membrane, where the concentration of PIP2 is physiologically regulated. Our results demonstrate that ion channels are one of the direct effector molecules of Gα proteins triggered by GPCR activation-providing a structural framework for unraveling the crosstalk between two major classes of transmembrane proteins: GPCRs and ion channels.


Assuntos
Canais de Potencial de Receptor Transitório , Humanos , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Canais de Cátion TRPC/metabolismo
4.
J Cell Mol Med ; 26(19): 4911-4923, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560982

RESUMO

Tricyclic antidepressants (TCAs) have been used to treat depression and were recently approved for treating irritable bowel syndrome (IBS) patients with severe or refractory IBS symptoms. However, the molecular mechanism of TCA action in the gastrointestinal (GI) tract remains poorly understood. Transient receptor potential channel canonical type 4 (TRPC4), which is a Ca2+ -permeable nonselective cation channel, is a critical regulator of GI excitability. Herein, we investigated whether TCA modulates TRPC4 channel activity and which mechanism in colonic myocytes consequently causes constipation. To prove the clinical benefit in patients with diarrhoea caused by TCA treatment, we performed mechanical tension recording of repetitive motor pattern (RMP) in segment, electric field stimulation (EFS)-induced and spontaneous contractions in isolated muscle strips. From these recordings, we observed that all TCA compounds significantly inhibited contractions of colonic motility in human. To determine the contribution of TRPC4 to colonic motility, we measured the electrical activity of heterologous or endogenous TRPC4 by TCAs using the patch clamp technique in HEK293 cells and murine colonic myocytes. In TRPC4-overexpressed HEK cells, we observed TCA-evoked direct inhibition of TRPC4. Compared with TRPC4-knockout mice, we identified that muscarinic cationic current (mIcat ) was suppressed through TRPC4 inhibition by TCA in isolated murine colonic myocytes. Collectively, we suggest that TCA action is responsible for the inhibition of TRPC4 channels in colonic myocytes, ultimately causing constipation. These findings provide clinical insights into abnormal intestinal motility and medical interventions aimed at IBS therapy.


Assuntos
Síndrome do Intestino Irritável , Canais de Cátion TRPC , Animais , Antidepressivos Tricíclicos/farmacologia , Cátions/metabolismo , Colinérgicos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células Musculares/metabolismo , Receptores Muscarínicos/metabolismo , Canais de Cátion TRPC/genética
5.
Clin Transl Med ; 11(3): e368, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784004

RESUMO

BACKGROUND: The discovery of receptor activator of nuclear factor-ĸB ligand (RANKL) as the final effector in the pathogenesis of osteoporosis has led to a better understanding of bone remodeling. When RANKL binds to its receptor (RANK), osteoclastic differentiation and activation are initiated. Herein, we propose a strategy using a novel RANKL variant as a competitive inhibitor for RANKL. The RANKL variant activates LGR4 signaling, which competitively regulates RANK and acts as an immunogen that induces anti-RANKL antibody production. METHODS: We modified the RANK-binding site on RANKL using minimal amino acid changes in the RANKL complex and its counterpart receptor RANK and tried to evaluate the inhibitory effects on osteoclastogenesis. RESULTS: The novel RANKL variant did not bind RANK in osteoclast progenitor cells, but activated LGR4 through the GSK3-ß signaling pathway, thereby suppressing activated T cell cytoplasmic nuclear factor calcineurin-dependent 1 (NFATc1) expression and activity during osteoclastogenesis. Our RANKL variant generated high levels of RANKL-specific antibodies, blocked osteoclastogenesis, and inhibited osteoporosis in ovariectomized mouse models. Generated anti-RANKL antibodies showed a high inhibitory effect on osteoclastogenesis in vivo and in vitro. CONCLUSIONS: We observed that the novel RANKL indeed blocks RANKL via LGR4 signaling and generates anti-RANKL antibodies, demonstrating an innovative strategy in the development of general immunotherapy.


Assuntos
Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Ligante RANK/metabolismo , Animais , Diferenciação Celular , Camundongos , Vacinas
6.
Front Physiol ; 11: 238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351395

RESUMO

The development of treatment for neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis is facing medical challenges due to the increasingly aging population. However, some pharmaceutical companies have ceased the development of therapeutics for NDs, and no new treatments for NDs have been established during the last decade. The relationship between ND pathogenesis and risk factors has not been completely elucidated. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where oxidative stress and disrupted Ca2+ homeostasis consequently lead to neuronal apoptosis. Reactive oxygen species (ROS) -sensitive TRP channels can be key risk factors as polymodal sensors, since progressive late onset with secondary pathological damage after initial toxic insult is one of the typical characteristics of NDs. Recent evidence indicates that the dysregulation of TRP channels is a missing link between disruption of Ca2+ homeostasis and neuronal loss in NDs. In this review, we discuss the latest findings regarding TRP channels to provide insights into the research and quests for alternative therapeutic candidates for NDs. As the structures of TRP channels have recently been revealed by cryo-electron microscopy, it is necessary to develop new TRP channel antagonists and reevaluate existing drugs.

7.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118620, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31812495

RESUMO

Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16­carbon fatty acid palmitate, is the most common acylation, and it enhances the membrane stability of ion channels. This post-translational modification (PTM) determines a functional mechanism of ion channel life cycle from maturation and membrane trafficking to localization. Especially, neurodevelopment is regulated by balancing the level of synaptic protein palmitoylation/depalmitoylation. Recently, we revealed the pathological role of the transient receptor potential canonical type 5 (TRPC5) channel in striatal neuronal loss during Huntington's disease (HD), which is abnormally activated by oxidative stress. Here, we report a mechanism of TRPC5 palmitoylation at a conserved cysteine residue, that is critical for intrinsic channel activity. Furthermore, we identified the therapeutic effect of TRPC5 depalmitoylation by enhancing the TRPC5 membrane instability on HD striatal cells in order to lower TRPC5 toxicity. Collectively, these findings suggest that controlling S-palmitoylation of the TRPC5 channel as a potential risk factor can modulate TRPC5 channel expression and activity, providing new insights into a therapeutic strategy for neurodegenerative diseases.


Assuntos
Neurônios/metabolismo , Estresse Oxidativo , Canais de Cátion TRPC/metabolismo , Motivos de Aminoácidos , Animais , Antineoplásicos Alquilantes/toxicidade , Apoptose/efeitos dos fármacos , Carmustina/toxicidade , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lipoilação/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/farmacologia , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Cátion TRPC/química , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA